Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

نویسندگان

  • Sangiliyandi Gurunathan
  • Jae Woong Han
  • Ahmed Abdal Dayem
  • Vasuki Eppakayala
  • Jin-Hoi Kim
چکیده

BACKGROUND Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO) and reduced graphene oxide (rGO) in Pseudomonas aeruginosa. In this work, we used a novel reducing agent, betamercaptoethanol (BME), for synthesis of graphene to avoid the use of toxic materials. To uncover the impacts of GO and rGO on human health, the antibacterial activity of two types of graphene-based material toward a bacterial model P. aeruginosa was studied and compared. METHODS The synthesized GO and rGO was characterized by ultraviolet-visible absorption spectroscopy, particle-size analyzer, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. Further, to explain the antimicrobial activity of graphene oxide and reduced graphene oxide, we employed various assays, such as cell growth, cell viability, reactive oxygen species generation, and DNA fragmentation. RESULTS Ultraviolet-visible spectra of the samples confirmed the transition of GO into graphene. Dynamic light-scattering analyses showed the average size among the two types of graphene materials. X-ray diffraction data validated the structure of graphene sheets, and high-resolution scanning electron microscopy was employed to investigate the morphologies of prepared graphene. Raman spectroscopy data indicated the removal of oxygen-containing functional groups from the surface of GO and the formation of graphene. The exposure of cells to GO and rGO induced the production of superoxide radical anion and loss of cell viability. Results suggest that the antibacterial activities are contributed to by loss of cell viability, induced oxidative stress, and DNA fragmentation. CONCLUSION The antibacterial activities of GO and rGO against P. aeruginosa were compared. The loss of P. aeruginosa viability increased in a dose- and time-dependent manner. Exposure to GO and rGO induced significant production of superoxide radical anion compared to control. GO and rGO showed dose-dependent antibacterial activity against P. aeruginosa cells through the generation of reactive oxygen species, leading to cell death, which was further confirmed through resulting nuclear fragmentation. The data presented here are novel in that they prove that GO and rGO are effective bactericidal agents against P. aeruginosa, which would be used as a future antibacterial agent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene Oxide Antibacterial Sheets: Synthesis and Characterization (RESEARCH NOTE)

Graphene oxide (GO) was synthesized by oxidation of graphite powder using a time-saving modification of Hummers’ method and its antibacterial activity was investigated. Different techniques were applied to characterize the synthesized GO. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to investigate the crystallinity, morphology, topograp...

متن کامل

Graphene Oxide/Hydroxyapatite/Silver (rGO/HAP/Ag) nanocomposite: Synthesis, characterization, catalytic and antibacterial activity

 In this paper, a novel ternary nanocomposite namely reduced graphene oxide/hydroxyapatite/silver (rGO/HAP/Ag) was prepared by a simple hydrothermal method using graphene oxide nanosheets, Ca(NO3)2, (NH4)2HPO4, and AgNO3 as starting materials. The as-prepared nanocomposite was characterized by using various photophysical techniqu...

متن کامل

Graphene Oxide/Hydroxyapatite/Silver (rGO/HAP/Ag) nanocomposite: Synthesis, characterization, catalytic and antibacterial activity

 In this paper, a novel ternary nanocomposite namely reduced graphene oxide/hydroxyapatite/silver (rGO/HAP/Ag) was prepared by a simple hydrothermal method using graphene oxide nanosheets, Ca(NO3)2, (NH4)2HPO4, and AgNO3 as starting materials. The as-prepared nanocomposite was characterized by using various photophysical techniqu...

متن کامل

Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide ...

متن کامل

Amperometric Determination of Ascorbic Acid in Pharmaceutical Formulations by a Reduced Graphene Oxide-cobalt Hexacyanoferrate Nanocomposite

Investigation of the redox properties of drugs and their determination are performed by electrochemical techniques. Data obtained from electrochemical techniques are often correlated with molecular structure and pharmacological activity of drugs. In this regard, different modified electrodes were applied as sensors for quantification of different drugs.A nanocomposite of reduced graphene oxide-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012